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Lindeman’s melting law and solidus curve under
pressure of Al–Si and Al–Ge solid solutions

HIROKO-MATSUO KAGAYA, KAZUMOTO IMAZAWA, MAYUMI SATO,
TOSHINOBU SOMA
Department of Computer Science and Engineering, Mining College, Akita
University, Akita 010, Japan

Using the pressure dependence of the mean-square displacement, the compression effect
on the melting temperature of matrix Al is studied by Lindeman’s melting law. The melting
curve obtained increases as a function of the pressure and is in good agreement with the
observed tendency for Al. The contribution of the transverse-like acoustic modes to the
mean-square displacement is important for Al and becomes more predominant under
pressure. Then, considering the contributions from the band and local mode frequencies,
the temperature- and pressure-dependent mean-square displacement is quantitatively
calculated for Al–Si and Al–Ge solid solutions. The concentration dependence of the Debye
temperature at high and low temperatures is estimated, and the pressure effect on the
solidus curves is presented by applying Lindeman’s melting law to the Al–Si and Al–Ge alloy
systems.  1998 Chapman & Hall

1. Introduction
The mean-square displacement of thermal vibration is
important for anharmonic and melting properties. As
the temperature is raised, the root-mean-square dis-
placement becomes large, and the contributions to the
free energy from the anharmonic term produce the
thermal expansion. The increase in the root-mean-
square displacement at higher temperatures causes
fusion of the solid lattice according to Lindeman’s [1]
melting law. The pressure effect on the melting point
was experimentally reported (see, for example, [2]),
and the qualitative tendency is not unique for all
solids. The melting point of covalent crystals decreases
under increasing pressure, but that of metallic mater-
ials increases. Previously, some experimental studies
[3—5] about the mean-square displacements of Al
from the X-ray Debye—Waller factor have been re-
ported, and the effect of pressure on the melting tem-
perature of Al in the low-pressure regions has also
been obtained experimentally [6, 7].

Under pressure, by rapid quenching from the liquid
state, an increase in solubility limit of Si and Ge in Al
has been observed [8—10]. Previously, using the
pseudopotential formalism and the virtual-crystal ap-
proximation, we [11] have obtained good agreement
of the equilibrium volume, equation of state and phase
boundary of Al—Si and Al—Ge alloy systems with ex-
perimental data and, considering the lattice dynamical
contributions to the free energy, presented the temper-
ature- and concentration-dependent elastic constants
for Al

1~x
Si

x
and Al

1~x
Ge

x
alloy systems [12]. Then,

we [13] have proposed a simplified treatment where
the lattice vibrations of Al, Si or Ge atoms in the Al—Si
and Al—Ge solid solutions are replaced by that of pure

Al, face-centred cubic (f.c.c.) Si or f.c.c. Ge crystal at the
lattice constant and electron density of the alloy. In
the present work, first, we calculate the temperature
dependence of the mean-square displacement for
matrix Al. Then, using the pressure-dependent mean-
square displacement, we study the effect of compres-
sion on the melting temperature of Al with the f.c.c.
phase according to Lindeman’s [1] criterion for
melting. Secondly, considering the contributions from
the band and local mode frequencies [13], we calcu-
late the concentration- and pressure-dependent mean-
square displacement for Al—Si and Al—Ge solid solu-
tions. Finally, by applying Lindeman’s melting law to
the Al—Si and Al—Ge alloy systems, we study the
pressure effect on the solidus curves of these systems.

2. Lindeman’s criterion and melting of
matrix Al

The mean-square displacement, Su2T, is temperature
dependent and can be expressed in terms of the ith
phonon mode frequency, m

i
(q) with wavevector q, for

a monatomic cubic crystal as

Su2T"

h

NM
+
i,q

1

m
i
(q) A

1

exp[hm
i
(q)/k¹]!1

#

1

2 B
(1)

where the summation is over all the N q points in the
Brillouin zone and all three i branches of the phonon
dispersion curves m

i
(q). In order to calculate m

i
(q), we

adopt our previous treatment [11—13] based on
the microscopic electronic theory. In numerical
calculations, we use the following sampling method.

0022—2461 ( 1998 Chapman & Hall 2595



Figure 1 The calculated mean-square displacements, Su2T, Su2T
TA

and Su2T
LA

versus temperature for matrix Al. (n), observed data
[3]; (h), observed data [4]; (]), observed data [5].

Figure 2 The calculated mean-square displacement, Su2T, under
pressure versus temperature for matrix Al.

Considering the symmetry of the irreducible one-forty
eighth portion of the Brillouin zone, it is sufficient to
determine the phonon frequencies in the range
q"2n(q

x
, q

y
, q

z
)/16a, where q

x
, q

y
and q

z
are positive

integers and satisfy the inequalities 0)q
x
)q

y
)q

z
)16 and q

x
#q

y
#q

z
)24, and a is the lattice con-

stant. Each point is weighted according to the number
of points equivalent to it by symmetry, especially on
the surface, edges and corners of the Brillouin zone.
A divergence occurs for the q+0 acoustic mode
phonon in the sum over the wavevector mesh of Equa-
tion 1. Therefore, the contribution to the mean-square
displacement owing to q+0 mode frequencies is cal-
culated by converting the summation to an integral
and assuming a Debye distribution.

We show the temperature dependence of Su2T for
matrix Al obtained using Equation 1 in Fig. 1, where
points are observed data [3—5], and ¹

.
is the melting

temperature at atmospheric pressure. In this figure
and what follows, the results with Vashishta—Singwi
screening function [11] are given, and our obtained
mean-square displacement, Su2T, has a calculated ac-
curacy DSu2TD)10~20 cm2 at ¹"0 and DSu2TD)
2]10~19 cm2 at ¹"¹

.
due to other screening func-

tions [11]. In Fig. 1, the separate contributions,
Su2T

TA
and Su2T

LA
, to the total mean-square displace-

ment, Su2T, from transverse-like and longitudinal-like
acoustic modes are also given, and we see that the
contribution of the transverse-like acoustic modes to
the mean-square displacement is predominant for Al.
In Debye’s model, the mean-square displacement,
Su2T, is related to the Debye temperature, #

D
, given

(see, for example, [14]) by

Su2T"

9+2¹
Mk#2

D

for ¹'#
D

(2)

or

Su2T"

9+2

4Mk#
D

for ¹(#
D

(3)

Lindeman [1] proposed that the melting process
occurs when the root-mean-square displacement,
Su2T1@2, of the lattice vibration reaches a critical frac-
tion of the nearest-neighbour distance. He assumed

that this critical fraction was the same for all crystal-
line solids, but it was later shown (see, for example,
[15, 16]) that in various cubic metals and alkali hali-
des this fraction was actually not constant. We define
Lindeman’s criterion for melting, x

.
, as the ratio of

two times the root-mean-square displacement,
Su2T1@2, at the melting temperature, ¹

.
, to the near-

est-neighbour distance, R
1

("21@2a/2), given by

x
.
"

2Su2T1@2

R
1

(4)

The numerical data of the critical fraction, x
.
, for

melting obtained is 0.2216$0.0005 for matrix Al. We
calculate the dependence of the phonon frequencies,
m
i
(q) [13], on the pressure, P. The conversion to the

compressed volume is performed using the pressure—
volume relation [11]. Using Equation 1, we show the
temperature dependence of the mean-square displace-
ment, Su2T, under pressure for matrix Al in Fig. 2.
Then, we show the relative contributions Su2T

TA
/Su2T

and Su2T
LA

/Su2T, to the total mean-square displace-
ment from the transverse-like and longitudinal-like
acoustic modes at the melting temperature under at-
mospheric pressure against the pressure in Fig. 3.
From this figure, we see that the contribution of the
transverse-like acoustic modes becomes more
predominant as the crystal is compressed.

Considering the pressure dependence of the mean-
square displacement, Su2T, and the nearest-neighbour
distance, R

1
, at a constant criterion for melting, x

.
, we

can estimate the pressure effect on the melting temper-
ature by satisfying the following relations

x
.
"

2Su2T1@2
T.(P)

R
1
(P)

(5)

and

R
1
(P)"A

)(P)

)
0
B
1@3

R
1
()

0
) (6)

where )
0
and )(P) are the crystal volume under atmo-

spheric pressure and under pressure, P, respectively.
We show the result obtained for the pressure depend-
ence of the melting temperature in Fig. 4, where the
maximum deviation of the melting temperature ob-
tained is about $5 K and the full and open circles are
the observed data [6, 7]. From Fig. 4, we see that the
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Figure 3 The relative ratios, Su2T
TA

/Su2T and Su2T
TA

/Su2T, versus
pressure at the melting point, ¹

.
, under atmospheric pressure for

matrix Al.

Figure 4 The calculated melting point, ¹
.
, versus pressure for

matrix Al. (s), observed data [6]; (d), observed data [7].

Figure 5 The calculated mean-square displacement, Su2T, under
pressure versus temperature for (a) Al

0.85
Si

0.15
and (b) Al

0.85
Ge

0.15
alloys.

melting temperature of matrix Al increases under in-
creasing pressure and this tendency obtained is consis-
tent with the observed data [6, 7].

3. Solidus curve under pressure of the Al–Si
and Al–Ge systems

Formulations for matrix Al in Section 2 are extended
to those for the Al—Si and Al—Ge alloy systems as

follows. Considering the band and local mode fre-
quencies, m+

i
(q, x) [13] in the Al

1~x
Si

x
and Al

1~x
Ge

x
solid solutions, the mean-square displacement, Su2T

x
,

for these alloy systems is given by

Su2T
x
"(1!x)

h

NMA-
ºA-(x)

#x
h

NMS* 03 G%
ºS* 03 G%(x) (7)

and

º+(x)"+
i,q

1

m+
i
(q, x) A

1

exp[hm+
i
(q, x)/k¹ ]!1

#

1

2 B
(8)

where j"Al, Si or Ge. We show the temperature
dependence of the mean-square displacement, Su2T,
for the Al

0.85
Si

0.15
and Al

0.85
Ge

0.15
solid solutions

obtained using Equations 7 and 8 in Fig. 5a and b,
respectively. From Fig. 5, we see that the pressure
effect on the mean-square displacement for these alloy
systems is similar to that for matrix Al in Fig. 2.

We can estimate the Debye temperatures #)5
D

and
#-5

D
at high and low temperatures in Equations 2 and 3.

We show the obtained concentration x dependence of
the Debye temperature #)5

D
at the representative tem-

peratures, which are taken to be 850 K and 680 K for
the Al

1~x
Si

x
and Al

1~x
Ge

x
solid solutions, and #-5

D
at

the absolute zero in Figs 6 and 7, respectively. Our
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Figure 6 The calculated Debye temperature, #)5
D
, at 850 and 680 K

versus atomic fraction for Al
1~x

Si
x

(—) and Al
1~x

Ge
x

(— )—).

Figure 7 The calculated Debye temperature, #-5
D
, at absolute zero

versus atomic fraction for Al
1~x

Si
x

(—) and Al
1~x

Ge
x

(— )—). (h),
observed data [17, 18] for matrix Al; (s), observed data [17, 18] for
Al

1~x
Si

x
; (n), observed data [17, 18] for Al

1~x
Ge

x
alloy.

Figure 8 The resultant solidus curves under pressure for (a) Al
1~x

Si
x

and (b) Al
1~x

Ge
x

systems. The phase boundaries between solid solu-
tion (SS) and phase mixture (PM) under pressure are our previous data
[11]. (— — —) P"0 GPa [8]; (— ) —), P"2.8 GPa [9]; (C), P"5.4 GPa
[9]; (j), solid solution with the f.c.c. phase [10] obtained experi-
mentally at P"4.5 GPa; (d), solid solution with the f.c.c. phase
[10] obtained experimentally at P"7.0 GPa; (]), solid solution
with the f.c.c. phase [10] obtained experimentally at P"9.0 GPa.

obtained Debye temperature #)5
D

and #-5
D

in Figs 6 and
7 have a calculated accuracy D*#

D
D)4 K due to other

screening functions [11]. Our obtained data #-5
D

for
matrix Al are in good agreement with the observed data
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[17] from elastic waves. The relative change in the
Debye temperature *#

D
(x)" #

D
(x)!#

D
(x" 0)

from that for matrix Al have a reduced accuracy D*#
D
(x)

D)1.5 K due to other screening functions [11]. From
Figs 6 and 7, we see that the Debye temperature de-
creases with increasing solubility of Si or Ge at high
temperatures and decreases greatly at low temperatures.

Using the concentration-dependent mean-square
displacement, Su2T

x
, in Equations 7 and 8 for the

Al
1~x

Si
x

and Al
1~x

Ge
x

alloy systems, we define
Lindeman’s criterion for melting, x

.
(x), of these alloys

as the ratio of twice the root-mean-square displacement,
Su2T1@2

x
, at the corresponding temperature, ¹

.
(x), on the

solidus curve [8] under atmospheric pressure to
the nearest-neighbour distance R

1
(x) ("21@2a (x)/2)

given by

x
.
(x)"

2Su2T1@2
x

R
1
(x)

(9)

where a(x) is the equilibrium lattice constant [11] for
these systems. We obtain the critical fraction, x

.
(x), in

Equation 9 to be 0.2214 in the solubility limit [8] under
atmospheric pressure with x"0.016 at ¹"850 K for
the Al

1~x
Si

x
alloy and 0.2212 with x"0.028 at

¹"697 K for Al
1~x

Ge
x
. The slope *x

.
/(x

.
*x) is

!0.0564 for the Al
1~x

Si
x

and !0.0644 for the
Al

1~x
Ge

x
system. Because the concentration depend-

ence of x
.

is small and remains within Lindeman’s
melting law [15, 16], we adopt the extrapolated de-
pendence of this slope, *x

.
/(x

.
*x), outside the solu-

bility limit under atmospheric pressure.
Considering the pressure dependence of the mean-

square displacement, Su2T
x
, and the nearest-neigh-

bour distance, R
1
(x), for Al

1~x
Si

x
and Al

1~x
Ge

x
solid

solutions at a constant criterion for melting, x
.
(x), we

can estimate the pressure effect on the solidus curve
for these alloys by satisfying the following relations

x
.
(x)"

2Su2T1@2
x,T.(x,P)

R
1
(x, P)

(10)

and

R
1
(x, P)"A

)(x, P)

)
0
(x) B

1@3
R

1
(x, )

0
) (11)

where the conversion from the pressure, P (x), to the
compressed volume, )(x), is done using the pres-
sure—volume relations [11]. We show the obtained
solidus curve under pressure for the Al

1~x
Si

x
and

Al
1~x

Ge
x

alloy systems in Fig. 8a and b, respectively.
From Fig. 8, we see that the solid solution in Al—Si
and Al—Ge system, extended under pressure, is consis-
tent with the observed tendency [9, 10]. Our resultant
solidus curves in Fig. 8 have a calculated accuracy
corresponding to D*xD)0.01 and D*¹ D)5 K. We
present the phase diagrams under pressure for Al—Si
and Al—Ge systems from first principles based on the
microscopic electronic theory, and we hope that there
will be further experimental research in this field. The
numerical calculations were carried out with the
ACOS3900 operating system at the Computer Center
of Tohoku University.
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